
Towards a Reuse-oriented Security Engineering for Web-based Applications and
Services

Aleksander Dikanski, Sebastian Abeck
Research Group Cooperation & Management (C&M)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{ a.dikanski, abeck }@kit.edu

Abstract—Security should be considered throughout a software
development process to develop secure applications. This
security engineering effort is restricted due to the complexity
and diffusion of todays security knowledge. Approaches, such
as misuse cases for threat specification and patterns for
security functionality modeling, try to use and integrate
security into software development, but their combined use is
still difficult. In this paper a framework for developing secure
software systems is presented, which aims at incorporating and
unifying existing security engineering approaches by applying
well-established reuse-oriented software development
paradigms, such as service-orientation. The security-related
activities and reusable artifacts of important development
phases are discussed and the mapping of artifacts between
different development phases is presented.

Keywords-security engineering; software development;
security patterns; service-orientation

I. INTRODUCTION

The increasing number of attacks on software systems
makes it more important than ever to develop secure
software systems. Especially web-based applications and
services are faced with numerous threats due to their public
access. But, the prevailing custom of including security
functionality after the functional development is infeasible, is
not fulfilling the actual security needs. Security engineering
aims for a consecutive secure software develop-ment by
introducing methods, tools, and activities into a software
development process [1].

Such an integration has not yet been achieved completely
as the amount of security knowledge, including theoretic
models, technologies and standards, developed until now is
complex, often diffused, and seldom structured enough to be
used in a software development process. Opposed to this,
security can usually be considered reusable across hetero-
geneous functional domains, e.g., access control models such
as role-based access control (RBAC, [2]) can be used in
different domains. Yet, so far structured means for reuse of
security functionality are not successfully employed. Exist-
ing approaches contribute mainly to specific develo-pment
phases. Yet, while each of these approaches is beneficial in
its intentions, they are hard to integrate.

In this work, an early version of a framework is
presented, which aims at structuring existing security know-
ledge in a reusable fashion and providing decision support to
integrate existing security engineering approaches and

methodologies more concisely. The concepts of modern
reuse-oriented paradigms, such as service-orientation, soft-
ware product lines (SPL) as well as model-driven software
development (MDSD), are facilitated in our approach.

The goal is to present developers a structured tool set, to
ease the coherent integration of security aspects into each
phase and across phases. Thus an increased quality of the
security functionality is achieved.The framework comprises
security requirements analysis templates and security pattern
languages. The former can be instantiated to analyze the
security needs of an application in a deterministic way, while
the latter can be used to choose appropriate security solutions
and iteratively refine them.

In the next section, approaches relevant for our work will
be discussed. In Section 3, the contribution of our approach
will be described. We further present two projects which lead
to the development of our framework in Section 4. A
conclusion closes the body of this paper.

II. RELATED WORK

Reuse in security engineering processes is discussed in
several approaches. The SECTET-framework [3] provides a
service-oriented security engineering approach for authori-
zation in inter-organizational workflows, but concentrates
mostly on web-service based architectures. The Secure-
Change-Project aims at a change-driven security engineering
approach, in which security requirements are specified,
which evolve throughout the lifetime of software [4]. While
the focus of this project is change of security requirements
and security design, our focus lies on presenting feasible
choices and decision support for them to increase quality of
security functionality.

Threat and risk analysis techniques for analyzing and
specifying security requirements include STRIDE [5], attack
trees [6], and misuse cases [7]. We are aiming at providing
deterministic threat descriptions at an appropriate abstraction
level and link them to appropriate security requirement
specifications to complement theses techniques, as this is
were each of them fails short and is thus difficult to apply.

Security patterns are a popular and widely accepted
method for modeling technology-independent security
functions [8]. Security pattern languages are utilized to
describe the connections between multiple patterns and their
combined usage [9]. But, alternative solutions are not
considered by existing languages. So far, only SPL
approaches consider such variations [10]. We aim to enhance

Figure 1. Overview over the security engineering framework

security pattern approaches by explicitly showing alternative
pattern solutions to security problems.

Model-driven security applies to methods of model-
driven software development to the security domain. Secure-
UML [11], UMLSec [12], and the work of Emig et al. [13]
are among the most prominent approaches in this field. They
do not consider existing security infrastructures in a service-
oriented way as we intend to do. Also, they also do not
provide chocies between alternative security patterns.

III. SECURITY ENGINEERING FRAMEWORK

The framework presented in the following complement
and unifyies existing approaches in the security engineering
field by providing reusable security-related development
artifacts and a decision support for them.

Reuse is at the core of many well-established software
engineering paradigms, which aim at managing complex
software systems development, such as service-orientation,
SPL and MDSD. A security engineering methodology based
on the reuse of existing security knowledge will lead to an
increased efficiency in the development of secure software
and to an improved quality of the security functionality.

An important goal for our approach is to be development
process agnostic, i.e., the artifacts contributed by our
framework should be independent from specific software
development processes and instead be applicable in different
methodologies and paradigms.

We further aim for decision support and guidance in
using security knowledge. The security domain comprises a
large knowledge base, including, e.g., security standards and
technologies as well as security models, principles and
policies. A structured approach is needed for applying this
knowledge in a development process. The focus lies on
supporting a decision process by pointing out alternative
solution to security problems.

Currently, the framework is limited to security within
web application and service development, thereby neglecting
lower levels of security measures such as web server,
operating system, and network, even though this is

considered bad security practice. Yet, we do not rule out the
applicability of our approach to these levels.

The next sections will present the core elements of our
framework and their intented function. The focus, thereby,
lies upon the first three phases, i.e., requirements analysis,
design and implementation phase. Testing and operation are
important phases in the development of secure applications
as well, but we exclude them here for brevity reasons.
A. Reusable Security Requirements Templates

Similar to functional requirements elicitation, security
requirements need to be analyzed and specifed as well to
determine application security needs. Difficulties in this
phase concern the appropriate abstraction level and the
format of the security requirements specification. Often they
are specified by proposing security functionality, instead of
constraints to the functionality [14][15].

According to our goals, our approach strives for
contributing reusable security requirements analysis
templates (SecRAT) to this phase. The template’s core is
based on the relationships between threats, which violate
security objectives, security requirements, which are capable
of mitigating the threats and implement security objectives.
These entities and their relationships form a basic security
requirements analysis domain model (SecADM), giving
structure to the templates. The templates will further be
categorized into domain-independent SecRATs, applicable to
multiple functional domains, and domain-specific SecRATs,
describing security requirements and threats specific to a
functional domain. This allows for a more focused and
structured approach to requirements analysis.

Reuse of security knowledge is thereby achieved by
documenting existing threat knowledge and explicitly
linking it to appropriate security requirements and objectives.
Therefore, if a threat is determined to be applicable in an
application development process, the appropriate template
can be instantiated, directly leading to related security
requirements as well as objectives and vice versa.

The templates are thereby independent of any approach
for analyzing and specifying security requirements such as

those mentioned in Section 2. Instead they can be used as a
structured decision support tool to determine necessary
security requirements as well as a common specification
format for any such process and modeling tools. Further,
each SecRAT is linked to an abstract security functions,
thereby supporting the transfer between requirements
engineering and design phase.
B. Security Pattern Language and Variability Model

The goal of the design phase is to implement security
requirements using appropriate security functions. They are
firstly specified at a coarse-grained, technology-independent
architecture-level design and iteratively refined to an fine-
grained, implementation-level design. These functions form
the security architecture of one or more applications and thus
need to be integrated into the overall architecture [16].

For the iterative refinement process, a concise security
pattern language (SecPAL) for each security function design
is proposed, which builds upon and complements previous
approaches. It enables the use and combination of multiple
security patterns, each of which relates to and implements a
certain security requirement. Thus a decision support is
offered, in that only compatible patterns are connected in the
pattern language. Yet, opposed to previous approaches, the
focus of the SecPALs lies on iterative refinement.

At each iterative refinement the design is not always
obvious. In fact, a choice between several design options can
be made. For example, to implement access control, several
alternatives exist, including role-based (RBAC, [2]) and
attribute-based access control [17], each of which might be
more suitable depending on application context.

To provide an overview over viable alternative security
patterns applicable to specific security problems, the Sec-
PAL is complemented by a security pattern variability model
(SecPVM). In each iterative refinement of a pattern, the
variability model can be applied to select an appropriate
variant for a pattern, if necessary. Currently, feature models
[18], a common tool to model commonality and variability in
SPL development, are feasible candidates to describe
security pattern variants including mandatory, optional and
exclusion relationships.
C. Service-Oriented Security Design

The combination of SecRAT, SecPAL, and SecPVM is
intended to support the development of new or the extension
of existing security functionality for software systems. But
they can also be used to support secure development pro-
jects, which need to be integrated into an existing security
infrastructure, e.g., in an enterprise environment. In this
context, we build upon our previous efforts [16][19] by
applying the service-orientation paradigm, i.e., the reuse and
restructuring of existing software systems to satisfy business
needs, to the design phase of security engineering as well.

Reusing existing services narrows security design
decisions. When developing an application for an IT
infrastructure in which, e.g., RBAC is the standard access
control policy model, a decision about the policy model to
use for access control in the newly developed application is
already determined.

In order to achieve the benefits of using security services
in the design models, an abstraction of the implemented
services to a technology-independent level is required,

displaying appropriate views of the complete security
architecture to developers [20].

We currently employ a manual approach, in which
required abstractions are provided by security experts once
for each utilized product, as we have done in previous work
[19]. The SecPAL can in this case be used as guidance to
identify fine-grained patterns within existing security
frameworks and products. SecPVM can be used to identify
and document alternative implementations offered by the
security framework or product. By following the language
paths in reverse direction, a relationship to more abstract,
coarse-grained patterns can be established.
D. Standards- and Pattern-based Model-Driven Security

Despite the reuse of existing functionality it is inevitable
that certain artifacts need to be developed as part of the
security engineering approach, even though our goal is to
reduce the number of such artifacts to allow for an efficient
development. In this context, we continue our previous
efforts on model-driven security [13], but are more focussed
on integrating it into a security engineering approach using
security technology standards and patterns to automatically
generate necessary artifacts.

While implementing security functionality, employing
security technology standards offers product independence
and interoperability. Yet, applying standards without in depth
knowledge is difficult, as they include a large degree of flexi-
bility. A very good example for this is the slowly progressing
adoption of XML-based security standards, developed main-
ly for web service-based applications [21][22]. Note that the
same can be argued for security frameworks and products.

As a benefit of the security pattern identification and
specification using the SecPAL described in the previous
section, specific guidelines and templates on how standards
are to be utilized to implement a certain security pattern. As
such, we are able to provide a security platform description,
which is used as a automatically generate relevant artifacts
from design models specified using SecPAL.

IV. MOTIVATING CASE STUDY SCENARIO

We are currently applying, refining, and evaluating our
approach by applying it in the development of two real-
world projects, requiring security functionality.
A. Case Study Description

The KITCampusGuide (KCG) is a web-based and
service-oriented geographic information system (GIS). It
supports employees, students and guest of the Karlsruhe
Institute of Technology (KIT) with their daily campus
activities. Its basic functionality allows the user to search for
points of interest (POI), such as buildings, rooms or offices,
and display results on a campus map.

This functionality will be extended as a proof-of-concept
for the european project OpenIoT by enabling students to
search for available workplaces on the campus. This func-
tionality will be implemented using smart objects. These
virtual or physical objects, such as rooms, are active partici-
pants in the information systems and can be remotely queried
and their state modified using sensor and actor technology.

Very early it became clear, that security aspects needed to
be implemented in the KCG application as the KIT is

restricted by legislative regulations, so that the privacy and
anonymity of the users, as well as integrity and confiden-
tiality of the processed data need to be assured, due to the
location sensitive nature of the application.

As the application was targeted to be integrated into the
overall KIT IT-infrastructure, utilization of the existing secu-
rity infrastructure was required. Therefore, the capabilities of
the provided security services need to be analyzed, so that
the analyzed security requirements can later be mapped upon
them.
B. Preliminary Results

We are currently in the progress of formulating an initial
set of reusable SecRATs for web-based GIS and IoT appli-
cations based on our experiences in developing the KCG ap-
plication as well as best practice security requirements found
in literature. These SecRATs are extensions of a domain-
independent SecRAT, which is currently developed as well.
From these, a first draft of the SecADM will be developed.
For the documentation we are currently using textual
templates, but are evaluating more formal methods.

We are further using existing works on security patterns
to formulate appropriate SecPALs for different security
solutions such as authentication and authorization. Not many
such patterns are available in the field of IoT-applications,
which is why we will document new security solutions as
well. In doing so, we are evaluating and formalizing
alternative design decisions into an appropriate SecPVM
using feature models.

We plan to validate our approach by applying it to other
projects from the same domain to test the integrity of the
developed artifacts. We further plan to adopt our approach to
different domains including cloud based applications. To
evaluate the increased quality of the implemented security
functionality empirical studies will be performed.

V. CONCLUSION AND OUTLOOK

In this paper, a security engineering framework was
outlined, which focuses on the structured reuse of existing
security knowledge by providing analysis templates and
pattern languages for security to increase quality of the
implemented security functionality. We argued the benefits
of security engineering and pointed out short-comings of
existing approaches due to missing integration and
combination. We identified that a structured approach need
to be based on reuse of existing security knowledge and a
decision support system in order to be feasible in the field.
We presented an outline for several contributions to the
different phases of a development process based on and
complementing existing approaches, which we think will be
beneficial to more efficient security engineering. In future
works, we will flesh out the details of the contributions. We
further presented current projects, which are used as cases
studies to demonstrate the practicability of our approach.

REFERENCES

[1] R. J. Anderson, Security Engineering. 2nd ed., Indianapolis, Ind.:
Wiley, 2008, p. 1040.

[2] D. Ferraiolo, R. Sandhu, S. Gavrila, and D. Kuhn, “Proposed
NIST Standard for Role-Based Access Control,” ACM
Transactions on Information and System Security (TISSEC), vol.
4, no. 3, pp. 224–274, 2001.

[3] M. Hafner and R. Breu, Security Engineering for Service-Oriented
Architectures. Heidelberg: Springer, 2008.

[4] R. Scandariato and F. Massacci, “SecureChange: security
engineering for lifelong evolvable systems,” in ISoLA'10:
Proceedings of the 4th international conference on Leveraging
applications of formal methods, verification, and validation, 2010,
vol. Part II , Volume Part II, pp. 9–12.

[5] D. Verdon and G. McGraw, “Risk analysis in software design,”
IEEE Security & Privacy, vol. 2, no. 4, pp. 79–84, 2004.

[6] B. Schneier, Secret & Lies, 1st ed., Weinheim: dpunkt.verlag,
2001, p. 408.

[7] G. Sindre and A. L. Opdahl, “Eliciting security requirements with
misuse cases,” Requirements Engineering, vol. 10, no. 1, pp. 34–
44, 2005.

[8] M. Schumacher, E. B. Fernandez, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns. Chichester, England: John
Wiley & Sons Ltd, 2005, p. 565.

[9] E. B. Fernandez and R. Pan, “A Pattern Language for Security
Models,” Conference on Pattern Languages of Programs, 2001.

[10] T. E. Fægri and S. O. Hallenstein, “A Software Product Line
Reference Architecture for Security,” in Software Product Lines,
no. 8, Berlin, Heidelberg: Springer, 2006, pp. 276–326.

[11] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-
Based Modeling Language for Model-Driven Security,” LNCS,
vol. 2460, pp. 426–441, 2002.

[12] J. Jürjens, “Model-Based Security Engineering with UML,” in
Foundations of Security Analysis and Design III, vol. 3655, no. 2,
A. Aldini, R. Gorrieri, and F. Martinelli, Eds. Berlin, Heidelberg:
Springer, 2005, pp. 42–77.

[13] C. Emig, S. Kreuzer, S. Abeck, J. Biermann, and H. Klarl,
“Model-Driven Development of Access Control Policies for Web
Services,” Proceedings of the 9th IASTED International
Conference Software Engineering and Applications, vol. 632, pp.
069–165, 2008.

[14] J. D. Moffett, C. B. Haley, and B. Nuseibeh, “Core security
requirements artefacts,” Department of Computing, Milton
Keynes, 2004/23, 2004.

[15] J. Rushby, “Security requirements specifications: How and what,”
Symposium on Requirements Engineering for Information
Security (SREIS), vol. 441, 2001.

[16] C. Emig, F. Brandt, S. Kreuzer, and S. Abeck, “Identity as a
Service-Towards a Service-Oriented Identity Management
Architecture,” LNCS, vol. 4606, pp. 1–8, 2007.

[17] E. Yuan, J. Tong, B. Inc, and V. McLean, “Attributed Based
Access Control (ABAC) for Web Services,” 2005 IEEE
International Conference on Web Services, 2005.

[18] K. Lee, K. C. Kang, and J. Lee, “Concepts and Guidelines of
Feature Modeling for Product Line Software Engineering,” in
Software Reuse: Methods, Techniques, and Tools, vol. 2319, no. 5,
C. Gacek, Ed. Berlin, Heidelberg: Springer, 2002, pp. 62–77.

[19] A. Dikanski, C. Emig, and S. Abeck, “Integration of a Security
Product in Service-oriented Architecture,” in 2009 Third
International Conference on Emerging Security Information,
Systems and Technologies, Athens, Greece, 2009, pp. 1–7.

[20] A. Dikanski and S. Abeck, “A View-based Approach for Service-
Oriented Security Architecture Specification,” in The Sixth
International Conference on Internet and Web Applications and
Services, St. Maarten, The Netherland Antilles, 2011.

[21] T. Imamura and M. Tatsubori, “Patterns for Securing Web Services
Messaging,” OOPSLA Workshop on Web Services and Service
Oriented Architecture Best Practice and Patterns, pp. 1-8, 2003.

[22] N. A. Delessy and E. B. Fernandez, “Patterns for the eXtensible
Access Control Markup Language,” Proceedings of the 12th
Pattern Languages of Programs Conference (PLoP2005), pp. 7–
10, 2005.

